HARGA PASARAN KUALITAS JEMPOLAN, dan anda dapat juga membeli barang dengan HARGA GROSIR*. Silahkan klik pada "info barang" untuk mengetahui detail barang..
Selamat berbelanjaa....

makalah geomorfologi

BAB I
PENDAHULUAN

Dua abad lalu, jarak antara sejumlah monumen-monumen-survei di Yunani diukur dengan sangat akurat. Pada tahun 1988 team ilmiah mengukur kembali jarak-jarak tersebut, dan menemukan bahwa Yunani lebih panjang satu meter. Mereka juga mendapatkan bahwa Yunani sedang terpelintir (twisted), bagian ujung Selatan, Peloponnesus, bergerak ke Baratdaya. Penyebab pemanjangan dan pelintiran ini adalah tektonik lempeng. Afrika bergerak ke Utara, perlahan-lahan mendorong sebagian lantai laut Mediteran kebawah Yunani. Gaya tektonik secara kontinu menekan, menarik, melengkungkan dan mematahkan batuan litosfir.
Sumber energi tektonik berasal dari energi panas bumi yang diubah menjadi energi mekanik oleh arus konveksi. Aliran konveksi sangat besar, batuan panas dalam mesosfir dan astenosfir pelahan-lahan menyeret dan melengkungkan litosfir secara kontinu yang akhirnya menyebabkan batuan terdeformasi, menjadi seperti yang kita lihat saat ini. Deformasi batuan litosfir terlalu lambat dan terlalu dalam untuk diamati. Contohnya lempeng India-Australia yang mendesak lempeng Eurasia, tercermin pada sesar Sumatra. Gerakannya tidak teramati tetapi hasilnya berupa Bukit-barisan dan seringnya terjadi gempa bumi didaerah ini.

BAB II
PEMBAHASAN
2.1 Deformasi kerak bumi
Secara umum deformasi kerak bumi merupakan hasil dari gaya tektonik yang secara terus menerus dan berkala menekan, menarik, membengkokkan dan mematahkan batuan di lapisan litosfer. Sumber energi tektonik tersebut berasal dari energi panas bumi yang diubah menjadi energi mekanik oleh arus konveksi. Aliran konveksi sangat besar, batuan panas dalam mesosfir dan astenosfir pelahan-lahan menyeret dan melengkungkan litosfir secara kontinu yang akhirnya menyebabkan kerak bumi terdeformasi, menjadi seperti yang kita lihat saat ini. Deformasi batuan litosfir terlalu lambat dan terlalu dalam untuk diamati. Contohnya lempeng India-Australia yang mendesak lempeng Eurasia, tercermin pada sesar Sumatera. Gerakannya tidak teramati tetapi hasilnya berupa Bukit barisan dan seringnya terjadi gempa bumi di daerah tersebut. Sehingga secara tidak langsung telah merubah struktur primer kerak bumi menjadi struktur sekunder yang telah terdeformasi.
2.1.1 Tegasan (stress) dan regangan (strain)
Tegasan merupakan gaya yang bekerja pada suatu luasan permukaan suatu benda. Sehingga apabila di aplikasikan ke dalam kasus kerak bumi tegasan merupakan suatu kondisi yang terjadi pada batuan sebagai respon dari gaya-gaya yang berasal dari luar. Batuan yang terdapat di kerak Bumi merupakan subyek yang secara terus menerus mendapat gaya yang berakibat tubuh batuan dapat mengalami pelengkungan atau keretakan. Ketika tubuh batuan melengkung atau retak, maka kita menyebutnya batuan tersebut terdeformasi (berubah bentuk dan ukurannya). Penyebab deformasi pada batuan adalah gaya tegasan (stress).
Pengaruh tegasan terhadap batuan tergantung pada cara bekerja atau sifat tegasannya dan sifat fisik batuan yang terkena tegasan. Stress terbagi menjadi dua bentuk yaitu :



1. Stress uniform
Yaitu stress yang menekan dengan besaran yang sama dari segala arah. Dalam batuan dinamakan confining stress karena setiap tubuh batuan dalam litosfir dibatasi oleh batuan disekitarnya dan ditekan secara merata (uniform) oleh berat batuan diatasnya.
2. Stress differensial
Yaitu stress yang menekan tidak dari semua jurusan dengan besaran yang sama. Dalam sistem ortogonal dapat diuraikan menjadi stress utama, yang maksimum, yang menengah dan yang paling kecil besarannya. Biasanya differential stress ini yang mendeformasi batuan dan dikenal 3 jenis differential stress yaitu tensional stress, compression stress dan shear stress.
• Tensional stress
Arahnya berlawanan pada satu bidang, dan sifatnya menarik (stretch) batuan dan dapat mengakibatkan batuan mengalami peregangan atau mengencang.
• Compression stress
Arahnya berhadapan serta memampatkan atau menekan batuan pada kerak bumi dan mengakibatkan batuan mengalami penekanan.
• Shear stress
Shear stress bekerja berlawanan arah, tidak dalam satu bidang, sehingga menyebabkan tergesernya dan berpindahnya batuan.
Uniform atau differensial stress yang menyebabkan terdeformasinya litosfir diakibatkan oleh gaya-gaya tektonik yang bekerja sepanjang waktu. Batuan yang terkena stress mengalami regangan atau perubahan bentuk dan atau volume dalam keadaan padat yang disebut strain atau regangan.


Pada dasarnya apabila kerak bumi atau batuan mengalami penambahan stress akan terdeformasi melalui tiga tahap secara berurutan, yaitu :
1. Elastic deformation
Secara umum terjadi terjadi apabila sifat gaya tariknya dapat berbalik (reversible). Begitu stress hilang, batuan kembali kebentuk dan volume semula. Seperti karet yang ditarik akan melar tetapi jika dilepas akan kembali ke panjang semula. Elastisitas ini ada batasnya yang disebut elastic limit, yang apabila dilampaui batuan tidak akan kembali pada kondisi awal. Di alam tidak pernah dijumpai batuan yang pernah mengalami deformasi elastis ini, karena tidak meninggalkan jejak atau bekas, karena kembali ke keadaan semula, baik bentuk maupun volumenya. Sir Robert Hooke (1635-1703) adalah orang pertama yang memperlihatkan hubungan antara stress dan strain yang sesuai dengan batuan Hukum Hooke mengatakan sebelum melampaui batas elastisitasnya hubungan stress dan strain suatu material adalah linier.
2. Ducite
Terjadi apabila sifat gaya tariknya tidak dapat kembali lagi (irreversible). Untuk mempermudah penjelasan dapat dilihat dari diagram strain-stress gambar 2.2, mula-mula kurva stress-strain naik tajam sepanjang daerah elastis sampai pada elastis limit, kurvanya mendatar. Penambahan stress menyebabkan terjadinya deformasi ductile. Bila proses stress dihentikan pada titik awal deformasi elasits, maka akan kembali sedikit kearah semula.
3. Fracture
Apabila gaya tariknya yang tidak kembali lagi ketika batuan pecah/retak. Deformasi rekah (fracture deformation) dan lentur (ductile deformation) adalah sama, menghasilkan regangan (strain) yang tidak kembali ke kondisi semula.


Deformsi kerak bumi dapat terjadi tidak hanya tergantung pada besarnya gaya yang bekerja, namun juga dipengaruhi oleh sifat fisika dan komposisi batuan serta lingkungan tektonik dan waktu, berikut diantaranya :
• Suhu
Makin tinggi suhu suatu benda padat semakin ductile sifatnya dan keregasannya makin berkurang. Misalnya pipa kaca tidak dapat dibengkokkan pada suhu udara, bila dipaksa akan patah, karena regas (brittle). Setelah dipanaskan akan mudah dibengkokkan. Demikian pula halnya dengan batuan. Di permukaan, sifatnya padat dan regas, tetapi jauh dibawah permukaan dimana suhunya tinggi, bersifat ducktile dan juga karena Pada temperatur tinggi molekul molekul dan ikatannya dapat meregang dan berpindah, sehingga batuan/material akan lebih bereaksi pada kelenturan dan pada temperatur, material akan bersifat retas.
• Waktu dan strain rate
Pengaruh waktu dalam deformasi batuan sangat penting. Kecepatan strain sangat dipengaruhi waktu. Strain yang terjadi bergantung pada berapa lama batuan dikenai stress. Kecepatan batuan untuk berubah bentuk dan volume disebut strain rate, yang dinyatakan dalam volume per unit volume per detik, di bumi berkisar antara 10-14/detik sampai 10-15/detik. Makin rendah strain rate batuan, makin besar kecenderungan terjadinya deformasi ducktile.
Pengaruh suhu, confining pressure dan strain rate pada batuan, seperti ciri pada kerak, terutama bagian atas dimana suhu dan confining pressure rendah tetapi strain rate tinggi, batuan cenderung regas (brittle) dan patah. Sedangkan bila suhu tinggi, confining pressure tinggi dan strain rate rendah batuan menjadi kurang regas dan lebih bersifat ducktile. Sekitar 15 km kebawah, batuan bersifat regas dan mudah patah. Dibawah 15 km batuan tidak mudah patah karena bersifat lebih ducktile. Kedalaman dimana sifat kerak berubah dari regas mulai menjadi ducktile disebut brittle-ductile transition.
• Komposisi
Komposisi batuan berpengaruh pada cara deformasinya. Komposisi mempunyai dua aspek. Pertama, jenis kandungan mineral dalam batuan, beberapa mineral (seperti kwarsa, garnet dan olivin) sangat brittle, sedangkan lainnya (seperti mika, lempung, kalsit dan gypsum) bersifat ducktile. Kedua, kandungan air dalam batuan mengurangi keregasannya dan memperbesar keducktilannya. Pengaruh air, memperlemah ikatan kimia mineral-mineral dan melapisi butiran-butiran mineral yang memperlemah friksi antar butir. Jadi batuan’basah’ cenderung lebih ducktile daripada batuan ‘kering’. Batuan yang cenderung terdeformasi ducktile diantaranya batugamping, marmer, lanau, serpih, filit dan sekis. Sedangkan yang cenderung brittle daripada ductile, batupasir, kwarsit, granit, granodiorit dan gneiss.
• Tekanan bebas
Pada material yang terkena tekanan bebas yang besar akan sifat untuk retak menjadi berkurang dikarenakan tekanan disekelilingnya cenderung untuk menghalangi terbentuknya retakan. Pada material yang tertekan yang rendah akan menjadi bersifat retas dan cenderung menjadi retak.
• Kecepatan tarikan
Pada material yang tertarik secara cepat cenderung akan retak. Pada material yang tertarik secara lambat maka akan cukup waktu bagi setiap atom dalam material berpindah dan oleh karena itu maka material akan berperilaku / bersifat lentur.

2.2 Struktur geologi
Deformasi pada kerak, yang kita amati saat ini adalah jejak deformasi yang telah terjadi beberapa ratus atau juta tahun yang lalu, dan dikenal sebagai struktur geologi. Dalam struktur geologi, deformasi akibat gaya tektonik dikelompokkan sebagai struktur sekunder dan dibedakan dari struktur yang terbentuk pada saat atau sebelum batuan terbentuk yang dinamakan struktur primer. Yang termasuk dalam struktur primer adalah struktur-struktur pada batuan sedimen, seperti bidang perlapisan, lapisan bersusun (graded beding), lapisan silang siur (cross beding) dan jejak binatang. Sedangkan pada batuan beku adalah rekahan-rekahan yang terbentuk akibat dinginan, dinamakan kekar kolom (columnar joints). Arah rekahan-rekahan yang tegak lurus bidang pendinginan, permukaannya segi enam, struktur aliran pada lava dsb. Struktur sekunder yang terbentuk setelah batuan terbentuk, adalah lipatan (fold), kekar (joint) dan sesar (fault).

2.2.1 Jurus dan kemiringan bidang
Untuk mendiskripsi deformasi lapisan batuan, misalnya pada batuan sedimen, diperlukan posisi atau kedudukan garis atau bidang setelah mengalami deformasi. Telah kita ketahui bahwa sedimen semula diendapkan dalam posisi horizontal. Setelah mengalami deformasi posisinya berubah, misalnya terlipat, maka posisi limb antiklin atau sinklin tidak horizontal lagi. Posisi atau kedudukan bidang-bidang yang membentuk limb ini dinyatakan dalam jurus atau strike dan kemiringan atau dip, yang dipergunakan untuk menyatakan kedudukan semua bidang di alam. Kemiringan adalah sudut terbesar antara bidang (miring) di alam dengan bidang horizontal dinyatakan dalam derajat. Bidang horizontal tidak mempunyai kemiringan, atau 00 dan bidang tegak 900. Jurus dan kemiringan dapat diukur ditempat dengan mempergunakan kompas geologi. Kompas geologi dilengkapi dengan water pas, untuk membuat bidang horizontal dan klinometer untuk mengukur kemiringan bidang.

2.2.2 Lipatan (fold)
Lipatan adalah deformasi lapisan batuan yang terjadi akibat dari gaya tegasan sehingga batuan bergerak dari kedudukan semula membentuk lengkungan. Berdasarkan bentuk lengkungannya lipatan dapat dibagi dua, yaitu a). Lipatan Sinklin adalah bentuk lipatan yang cekung ke arah atas, sedangkan lipatan antiklin adalah lipatan yang cembung ke arah atas. Berdasarkan kedudukan garis sumbu dan bentuknya, lipatan dapat dikelompokkan menjadi :

1. Lipatan Paralel adalah lipatan dengan ketebalan lapisan yang tetap.
2. Lipatan Similar adalah lipatan dengan jarak lapisan sejajar dengan sumbu utama.
3. Lipatan Harmonik atau Disharmonik adalah lipatan berdasarkan menerus atau tidaknya sumbu utama.
4. Lipatan Ptigmatik adalah lipatan terbalik terhadap sumbunya.
5. Lipatan Chevron adalah lipatan bersudut dengan bidang planar.
6. Lipatan Isoklin adalah lipatan dengan sayap sejajar.
7.Lipatan Klin Bands adalah lipatan bersudut tajam yang dibatasi oleh permukaan planar.


2.2.3 Sesar
Kadang-kadang deformasi berlangsung cukup cepat untuk diamati dan diukur. Untuk memudahkan deformasi kerak bumi yang teramati digolongkan dalam dua kelompok besar : gerakan mendadak yang melibatkan terjadinya rekahan, dimana blok-blok kerak tiba-tiba bergerak beberapa centimeter atau beberapa meter dalam hitungan menit atau jam. Dan gerak lamban serta bertahap termasuk deformasi ductile. Geraknya tetap, menerus tidak disertai hentakan. Gerakan mendadak melibatkan rekahan pada batuan regan (britle). Rekahan pada batuan dimana terjadi pergeseran sepanjang rekahan dinamakan sesar, patahan atau fault. Sekali rekahan mulai, timbul gesekan mengikuti pergeseran. Selanjutnya perlahan-lahan stress terkumpul atau tertahan selama gesekan antara kedua sisi sesar dapat mengatasinya. Kemudian mendadak terjadi lagi pergeseran. Jika stress tetap ada, perulangan penumpukan stress yang diakhiri dengan pergeseran mendadak terjadi berulang kali. Meskipun gerakan sesar besar sampai beberapa kilometer, tetapi jarak tersebut merupakan jumlah dari gerakan mendadak.
Sesar dapat dibagi kedalam beberapa jenis/tipe tergantung pada arah relatif pergeserannya. Selama patahan/sesar dianggap sebagai suatu bidang datar, maka konsep jurus dan kemiringan juga dapat dipakai, dengan demikian jurus dan kemiringan dari suatu bidang sesar dapat diukur dan ditentukan. Pembagiannya antara lain sebagai berikut :

1. Dip Slip Faults – adalah patahan yang bidang patahannya menyudut (inclined) dan pergeseran relatifnya berada disepanjang bidang patahannya atau offset terjadi disepanjang arah kemiringannya.


2. Normal Faults – adalah patahan yang terjadi karena gaya tegasan tensional horisontal pada batuan yang bersifat retas dimana “hangingwall block” telah mengalami pergeseran relatif ke arah bagian bawah terhadap “footwall block”.

3. Horsts & Gabens – Dalam kaitannya dengan sesar normal yang terjadi sebagai akibat dari tegasan tensional, seringkali dijumpai sesar-sesar normal yang berpasang pasangan dengan bidang patahan yang berlawanan.

4. Half-Grabens – adalah patahan normal yang bidang patahannya berbentuk lengkungan dengan besar kemiringannya semakin berkurang kearah bagian bawah sehingga dapat menyebabkan blok yang turun mengalami rotasi.

5. Reverse Faults – adalah patahan hasil dari gaya tegasan kompresional horisontal pada batuan yang bersifat retas, dimana “hangingwall block” berpindah relatif kearah atas terhadap “footwall block”.

6. Strike Slip Faults – adalah patahan yang pergerakan relatifnya berarah horisontal mengikuti arah patahan. Patahan jenis ini berasal dari tegasan geser yang bekerja di dalam kerak bumi.
7. Transform-Faults adalah jenis patahan “strike-slip faults” yang khas terjadi pada batas lempeng, dimana dua lempeng saling berpapasan satu dan lainnya secara horisontal. Jenis patahan transform umumnya terjadi di pematang samudra yang mengalami pergeseran (offset), dimana patahan transform hanya terjadi diantara batas kedua pematang, sedangkan dibagian luar dari kedua batas pematang tidak terjadi pergerakan relatif diantara kedua bloknya karena blok tersebut bergerak dengan arah yang sama. Daerah ini dikenal sebagai zona rekahan (fracture zones). Patahan “San Andreas” di California termasuk jenis patahan “transform fault”.
Lipatan dan sesar tidak selalu menerus. Sesar-sesar cenderung berhenti sebagai lipatan Lipatan, akan berhenti diujungnya yang makin mengecil,
Jika dua macam batuan terkena tegasan yang sama, yang regas (britle) akan terdeformasi sebagai rekahan atau tersesarkan, dan lainnya yang lentur (ductile) terdeformasi ductile. Hasilnya adalah sebuah lipatan monoklin,
Beberapa sesar anjakan (thrust fault), diawali oleh lipatan rebah yang karena tegasannya berlanjut, sayapnya yang terbalik tertarik kuat, teregangkan dan akhirnya patah menjadi sesar anjakan.

2.2.4 Kekar
Kekar atau joint adalah rekahan-rekahan pada batuan, lurus, planar dan tidak terjadi pergeseran. Kekar umumnya terdapat sebagai rekahan tensional dan tidak ada gerak sejajar bidangnya.Kekar membagi-bagi batuan yang tersingkap menjadi blok-blok yang besarnya bergantung pada kerapatan kekarnya. Dan merupakan bentuk rekahan paling sederhana yang dijumpai pada hampir semua batuan. Biasanya terdapat sebagai dua set rekahan, yang perpotongannya membentuk sudut berkisar antara 45 sampai 90 derajat.
Kekar mungkin berhubungan dengan sesar besar atau oleh pengangkatan kerak yang luas, dapat tersebar sampai ribuan meter persegi luasnya. Umumnya pada batuan yang regas. Kebanyakan kekar merupakan hasil pembubungan kerak atau dari kompresi atau tarikan (tension) berkaitan dengan sesar atau lipatan.
Ada kekar tensional yang diakibatkan oleh pelepasan beban atau pemuaian batuan. Kekar kolom pada batuan volkanik terbentuk oleh tegasan yang terjadi ketika lava mendingin dan mengkerut.
Pada lapisan-lapisan sedimen terutama batupasir, sering terdapat kekar-kekar yang bervariasi arahnya. Rekahan ini terbentuk selama penimbunan dan litifikasi yang akan tetap tertutup selama tertimbun dikedalaman. Karena erosi dan tersingkap, sedikit pendinginan dan kompresi relief memungkinkan rekahan agak terbuka. Pada beberapa daerah kekar mengontrol pola aliran sungai, terutama aliran-aliran sekundernya.
Kekar juga mempunyai nilai ekonomis. Dapat memperbesar permeabilitas yang penting bagi migrasi dan menampung air tanah dan minyak bumi.
Analisa kekar sangat diperlukan dalam eksplorasi dan pengembangan sumber daya alam. Rekahan-rekahan mengontrol endapan mineral, tembaga, timbal, seng, merkuri, perak, mas dan tungsten.
Larutan hidrotermal yang berasosiasi dengan intrusi batuan beku mengalir sepanjang kekar-kekar dan mengendapkan mineral-mineral sepanjang dinding kekar, membentuk urat-urat mineral (mineral veins). Konstruksi besar, seperti bendungan, sangat perlu memperhatikan sistem kekar pada batuan. Selain mempengaruhi daya dukung batuan, kekar juga dapat menimbulkan masalah kebocoran. Dalam penambangan batuan, marmer, granit dll, sistem kekarlah yang menentukan berapa besar blok batuan yang dapat ditambang. Dan adanya kekar-kekar akan mengurangi peledakan yang diperlukan.


DAFTAR PUSTAKA

Sapiie, Benyamin dkk. 2010.GEOLOGI FISIK. Bandung: ITB
Endarto, Danang. 2005. PENGANTAR GEOLOGI DASAR. Surakarta: UPT Penerbitan dan Percetakan UNS

Referensi lain:
http://ariefgeo.blogspot.com/2010/06/deformasi-kerak-bumi.html
http://debriadiharset.wordpress.com/2010/03/07/3rd-structure-geology/
http://www.docstoc.com/docs/58629055/Chapter-4-Geologi-Struktur-dan-Tekto

0 komentar:

Posting Komentar